Low temperature photo-oxidation of chloroperoxidase Compound II
نویسندگان
چکیده
منابع مشابه
Low temperature photo-oxidation of chloroperoxidase Compound II.
Oxidation of the heme-thiolate enzyme chloroperoxidase (CPO) from Caldariomyces fumago with peroxynitrite (PN) gave the Compound II intermediate, which was photo-oxidized with 365 nm light to give a reactive oxidizing species. Cryo-solvents at pH ≈ 6 were employed, and reactions were conducted at temperatures as low as -50° C. The activity of CPO as evaluated by the chlorodimedone assay was una...
متن کاملOxidation of horseradish peroxidase compound II to compound I.
In the reaction between equimolar amounts of horseradish peroxidase and chlorite, the native enzyme is oxidized directly to Compound II (Hewson, W.D., and Hager, L.P. (1979) J. Biol. Chem. 254, 3175-3181). At acidic pH but not at alkaline values, this initial reaction is followed by oxidation of Compound II to Compound I. The highly pH-dependent chemistry of Compound II can be readily demonstra...
متن کاملProgress in Understanding Low-Temperature Organic Compound Oxidation Using a Jet-Stirred Reactor
The jet-stirred reactor (JSR) has become a tool frequently used to study the oxidation of a wide range of reactants and particularly to obtain data for testing detailed kinetic models. This paper aims to discuss recent knowledge pertaining to low-temperature oxidation of hydrocarbons and oxygenated reactants that has been gained from using a JSR in connection with gas chromatography, especially...
متن کاملStudy of Photo-Conductivity in MoS2 Thin Films Grown in Low-Temperature Aqueous Solution Bath
An experimental study over the optical response of thin MoS2 films grownby chemical bath deposition (CBD) method is presented. As two important factors, theeffect of bath temperature and growth time are considered on the photocurrentgeneration in the grown samples. The results show that increasing the growth time leadsto better optical response and higher difference betw...
متن کاملChloroperoxidase compound I: Electron paramagnetic resonance and Mössbauer studies.
The green primary compound of chloroperoxidase was prepared by freeze-quenching the enzyme after rapid mixing with a 5-fold excess of peracetic acid. The electron paramagnetic resonance (EPR) spectra of these preparations consisted of at least three distinct signals that could be assigned to native enzyme, a free radical, and the green compound I as reported earlier. The absorption spectrum of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Inorganic Biochemistry
سال: 2010
ISSN: 0162-0134
DOI: 10.1016/j.jinorgbio.2010.07.004